Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Vaccine ; 41(29): 4206-4211, 2023 06 29.
Article in English | MEDLINE | ID: covidwho-20230961

ABSTRACT

Heterologous boost regimens are being increasingly considered against SARS-CoV-2. We report results for the 32 of 45 participants in the Phase 1 CoV2-001 clinical trial (Kim et al., Int J Iinfect Dis 2023, 128:112-120) who elected to receive an EUA-approved SARS-CoV-2 mRNA vaccine 6 to 8 months following a two-dose primary vaccination with the GLS-5310 bi-cistronic DNA vaccine given intradermally and followed by application of suction using the GeneDerm device. Receipt of EUA-approved mRNA vaccines after GLS-5310 vaccination was well-tolerated, with no reported adverse events. Immune responses were enhanced such that binding antibody titers, neutralizing antibody titers, and T-cell responses increased 1,187-fold, 110-fold, and 2.9-fold, respectively. This paper is the first description of the immune responses following heterologous vaccination with a DNA primary series and mRNA boost.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , DNA , SARS-CoV-2 , Vaccination
2.
Int J Infect Dis ; 128: 112-120, 2023 Mar.
Article in English | MEDLINE | ID: covidwho-2242189

ABSTRACT

OBJECTIVES: The CoV2-001 phase I randomized trial evaluated the safety and immunogenicity of the GLS-5310 bi-cistronic DNA vaccine through 48 weeks of follow-up. DESIGN: A total of 45 vaccine-naïve participants were recruited between December 31, 2020, and March 30, 2021. GLS-5310, encoding for the SARS-CoV-2 spike and open reading frame 3a (ORF3a) proteins, was administered intradermally at 0.6 mg or 1.2 mg per dose, followed by application of the GeneDerm suction device as part of a two-dose regimen spaced either 8 or 12 weeks between vaccinations. RESULTS: GLS-5310 was well tolerated with no serious adverse events reported. Antibody and T cell responses were dose-independent. Anti-spike antibodies were induced in 95.5% of participants with an average geometric mean titer of ∼480 four weeks after vaccination and declined minimally through 48 weeks. Neutralizing antibodies were induced in 55.5% of participants with post-vaccination geometric mean titer of 28.4. T cell responses were induced in 97.8% of participants, averaging 716 site forming units/106 cells four weeks after vaccination, increasing to 1248 at week 24, and remaining greater than 1000 through 48 weeks. CONCLUSION: GLS-5310 administered with the GeneDerm suction device was well tolerated and induced high levels of binding antibodies and T-cell responses. Antibody responses were similar to other DNA vaccines, whereas T cell responses were many-fold greater than DNA and non-DNA vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , SARS-CoV-2 , Suction , Viral Vaccines , COVID-19 Vaccines/administration & dosage
3.
Arch Toxicol ; 97(4): 1177-1189, 2023 04.
Article in English | MEDLINE | ID: covidwho-2209309

ABSTRACT

pGO-1002, a non-viral DNA vaccine that expresses both spike and ORF3a antigens of SARS-CoV-2, is undergoing phase 1 and phase 2a clinical trials in Korea and the US. A preclinical repeated-dose toxicity study in New Zealand white rabbits in compliance with Good Laboratory Practice (GLP) was conducted to assess the potential toxicity, local tolerance, and immunogenicity of the vaccine and GeneDerm suction device. The dose rate was 1.2 mg/head pGO-1002, and this was administered intradermally to a group of animals (eight animals/sex/group) three times at 2-week intervals, followed by a 4-week recovery period. After each administration, suction was applied to the injection site using the GeneDerm device. Mortality, clinical signs, body weight, food consumption, skin irritation, ophthalmology, body temperature, urinalysis, and clinical pathology were also monitored. Gross observations and histopathological evaluation were performed. Overall, pGO-1002 administration-related changes were confined to minor damage or changes at the injection site, increased spleen weight and minimal increased cellularity in white pulp. All changes of injection site were considered local inflammatory changes or pharmacological actions due to the vaccine with the changes in spleen considered consistent with vaccine-induced immune activation. All findings showed reversibility during the 4-week recovery period. Animals vaccinated with pGO-1002, administered by intradermal injection and followed by application of suction with GeneDerm, developed humoral and cellular responses against the SARS-CoV-2 antigens consistent with prior studies in rats. Collectively, it was concluded that the pGO-1002 vaccine was safe and effective under these experimental conditions and these data supported future human study of the vaccine, now known as GLS-5310, for clinical trial use.


Subject(s)
COVID-19 , Vaccines, DNA , Humans , Rabbits , Animals , Rats , SARS-CoV-2 , Injections, Intradermal , COVID-19/prevention & control , Suction
4.
Methods Mol Biol ; 2410: 229-263, 2022.
Article in English | MEDLINE | ID: covidwho-1575944

ABSTRACT

Vaccines are one of mankind's greatest medical advances, and their use has drastically reduced and in some cases eliminated (e.g., smallpox) disease and death caused by infectious agents. Traditional vaccine modalities including live-attenuated pathogen vaccines, wholly inactivated pathogen vaccines, and protein-based pathogen subunit vaccines have successfully been used to create efficacious vaccines against measles, mumps, rubella, polio, and yellow fever. These traditional vaccine modalities, however, take many months to years to develop and have thus proven less effective for use in creating vaccines to emerging or reemerging infectious diseases (EIDs) including influenza, Human immunodeficiency virus (HIV), dengue virus (DENV), chikungunya virus (CHIKV), West Nile virus (WNV), Middle East respiratory syndrome (MERS), and the severe acute respiratory syndrome coronaviruses 1 and 2 (SARS-CoV and SARS-CoV-2). As factors such as climate change and increased globalization continue to increase the pace of EID development, newer vaccine modalities are required to develop vaccines that can prevent or attenuate EID outbreaks throughout the world. One such modality, DNA vaccines, has been studied for over 30 years and has numerous qualities that make them ideal for meeting the challenge of EIDs including; (1) DNA vaccine candidates can be designed within hours of publishing of a pathogens genetic sequence; (2) they can be manufactured cheaply and rapidly in large quantities; (3) they are thermostable and have reduced requirement for a cold-chain during distribution, and (4) they have a remarkable safety record in the clinic. Optimizations made in plasmid design as well as in DNA vaccine delivery have greatly improved the immunogenicity of these vaccines. Here we describe the process of making a DNA vaccine to an EID pathogen and describe methods used for assessing the immunogenicity and protective efficacy of DNA vaccines in small animal models.


Subject(s)
Communicable Diseases, Emerging , Vaccines, DNA , Viral Vaccines , Animals , COVID-19 , Communicable Diseases, Emerging/prevention & control , Humans , Immunity , Severe acute respiratory syndrome-related coronavirus , SARS-CoV-2 , Vaccines, Attenuated/immunology , Vaccines, DNA/immunology , Vaccines, Inactivated/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
5.
MMWR Morb Mortal Wkly Rep ; 70(47): 1646-1648, 2021 Nov 26.
Article in English | MEDLINE | ID: covidwho-1534935

ABSTRACT

Pregnant and recently pregnant women are at increased risk for severe illness and death from COVID-19 compared with women who are not pregnant or were not recently pregnant (1,2). CDC recommends COVID-19 vaccination for women who are pregnant, recently pregnant, trying to become pregnant, or might become pregnant in the future.*,† This report describes 15 COVID-19-associated deaths after infection with SARS-CoV-2 (the virus that causes COVID-19) during pregnancy in Mississippi during March 1, 2020-October 6, 2021.


Subject(s)
COVID-19/mortality , Pregnancy Complications, Infectious/epidemiology , Adult , COVID-19 Vaccines/administration & dosage , Centers for Disease Control and Prevention, U.S. , Female , Humans , Mississippi/epidemiology , Practice Guidelines as Topic , Pregnancy , Risk Assessment , United States , Young Adult
6.
Sci Adv ; 7(45): eabj0611, 2021 11 05.
Article in English | MEDLINE | ID: covidwho-1515256

ABSTRACT

This work reports a suction-based cutaneous delivery method for in vivo DNA transfection. Following intradermal Mantoux injection of plasmid DNA in a rat model, a moderate negative pressure is applied to the injection site, a technique similar to Chinese báguàn and Middle Eastern hijama cupping therapies. Strong GFP expression was demonstrated with pEGFP-N1 plasmids where fluorescence was observed as early as 1 hour after dosing. Modeling indicates a strong correlation between focal strain/stress and expression patterns. The absence of visible and/or histological tissue injury contrasts with current in vivo transfection systems such as electroporation. Specific utility was demonstrated with a synthetic SARS-CoV-2 DNA vaccine, which generated host humoral immune response in rats with notable antibody production. This method enables an easy-to-use, cost-effective, and highly scalable platform for both laboratorial transfection needs and clinical applications for nucleic acid­based therapeutics and vaccines.


Subject(s)
COVID-19 Vaccines , COVID-19 , DNA , SARS-CoV-2 , Skin/immunology , Transfection , Vaccines, DNA , Administration, Cutaneous , Animals , COVID-19/genetics , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , COVID-19 Vaccines/immunology , COVID-19 Vaccines/pharmacology , DNA/genetics , DNA/immunology , DNA/pharmacology , Male , Rats , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Suction , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Vaccines, DNA/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL